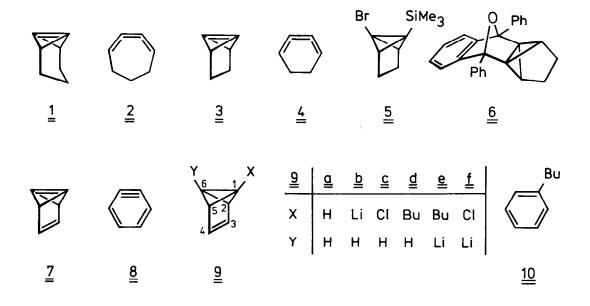
FORMATION OF 1,2-DEHYDROBENZENE FROM 1-CHLOROBENZVALENE BY STRONG BASES: EVIDENCE FOR THE REARRANGEMENT OF 1.6-DEHYDROBENZVALENE TO BENZYNE

Arnulf-Dieter Schlüter, Johannes Belzner, Ulrich Heywang, and Günter Szeimies\*

Institut für Organische Chemie der Universität München Karlstraße 23. D-8000 München 2. Germany

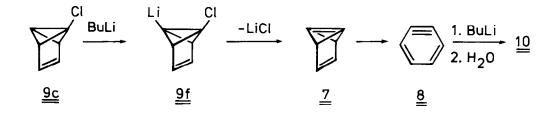
<u>Summary</u>: Treatment of 1-chlorobenzvalene with <u>n</u>-butyllithium or with lithium diisopropylamide in the presence of dimethylfuran and furan led to butylbenzene and to the adducts <u>12a</u> and b, respectively.

We have recently demonstrated that tricyclo[4.1.0.0<sup>2,7</sup>]hept-1(7)-ene (1) at room temperature and above rearranged to 1,2,3-cycloheptatriene (2)<sup>1)</sup>. We have tried to extend this reaction to the lower homologue 3 and found that 3, even at 80°C, did not show any propensity to isomerize to 1,2,3-cyclohexatriene (4). When 3 was generated from the silane 5 by desilylation with CsF in DMSO at 80°C in the presence of diphenylisobenzofuran, only the known<sup>2)</sup> [3.1.1]propellane 6 was isolated in 43% yield. The different behavior of 1 and 3 with respect to the bicyclo[1.1.0]but-1(3)-ene 1,2,3-butatriene rearrangement probably rests on the fact that the reaction 1 + 2 is considerably more exothermic than the isomerization  $3 \rightarrow 4$  and, therefore, proceeds at lower temperature <sup>3)</sup>. In this connection it seemed of interest to find out, if the isomerization of 1,6-dehydrobenzvalene (7) to benzyne (8) could be brought about, and at what temperature this orbital symmetry-allowed <sup>4)</sup> conversion would take place.


Solutions of 1-chlorobenzvalene ( $\underline{9}\underline{c}$ ) in ether were obtained, when  $\underline{9}\underline{a}$  <sup>5)</sup> was metalated to  $\underline{9}\underline{b}$  with <u>n</u>-butyllithium (BuLi) at room temperature, followed by addition of  $\underline{9}\underline{b}$  to p-toluenesulfonyl chloride (TsCl) in ether at -78°C. The precipitate was filtered off with a glass frit at -78°C and the resulting filtrate contained  $\underline{9}\underline{c}$  in a yield of 35%.  $\underline{9}\underline{c}$  was characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy <sup>6,7)</sup>.

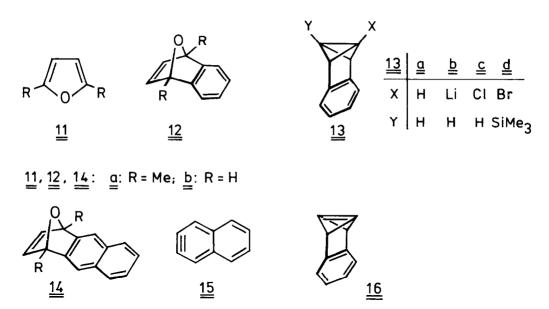
 $\underline{9c}$  proved to be less stable than  $\underline{9a}$ . When a mixture of  $\underline{9a}$  and  $\underline{9c}$  in ether was warmed to room temperature, <sup>1</sup>H NMR analysis showed that the concentration of  $\underline{9a}$  was unchanged, whereas  $\underline{9c}$  had completely rearranged to chlorobenzene <sup>8</sup>. At -78°C  $\underline{9c}$  was stable for several days.

The addition of  $\underline{9}\underline{c}$  in ether to a solution of BuLi (4.0 equiv.) in ether at -105°C fol-


891

lowed, after 15 minutes, by aqueous work-up, led to a 45% yield of butylbenzene  $(\underline{10})$ . 1-Butylbenzvalene  $(\underline{9d})$  or 1-butyl-6-lithiobenzvalene  $(\underline{9e})$  could not be detected, even when the components were mixed at -105°C and the solution was analyzed by <sup>1</sup>H NMR spectroscopy at -60°C. 1-Methylbenzvalene <sup>9</sup> and 1-lithio-6-methylbenzvalene were prepared as model compounds for  $\underline{9d}$  and  $\underline{9e}$  and were found to be stable at room temperature in ether in the presence of lithium chloride. In a further control experiment it was ascertained that a mixture of BuLi (4.0 equiv.) and chlorobenzene in ether at -105°C, followed by aqueous work-up after 15 minutes, did not lead to  $\underline{10}$  in a yield exceeding 0.5%.




From these results we conclude that the reaction of  $\underline{9c}$  with BuLi does not produce  $\underline{10}$  via the route  $\underline{9c} \rightarrow \underline{9f} \rightarrow \underline{7} \rightarrow \underline{9e} \rightarrow \underline{9d} \rightarrow \underline{10}$  and not via the sequence  $\underline{9c} \rightarrow \text{chlorobenzene} \rightarrow \underline{8} \rightarrow \underline{10}$ . However, the mechanism depicted in the Scheme is consistent with all our observations.

Scheme



According to the Scheme, the reaction of BuLi with  $\underline{9c}$  affords, via  $\underline{9f}$ , 1,6-dehydrobenzvalene ( $\underline{7}$ ), which, even at -105°C, rearranges faster to benzyne ( $\underline{8}$ ) than it adds BuLi to form  $\underline{9e}$  10.

The result of a further experiment indicated that  $\underline{8}$ , and not  $\underline{7}$ , was the reactive species that had been trapped. When LDA was added to  $\underline{9}\underline{c}$  in ether at  $-70^{\circ}C$  in the presence of a mixture of 2,5-dimethylfuran ( $\underline{1}\underline{1}\underline{a}$ ) and furan ( $\underline{1}\underline{1}\underline{b}$ ) (20 equiv. of each), a 2.0:1.0 mixture of the Diels-Alder adducts  $\underline{1}\underline{2}\underline{a}$  and  $\underline{b}$  was produced (total yield 17%). The same 2.0:1.0 ratio of  $\underline{1}\underline{2}\underline{a}$  and  $\underline{b}$  was obtained on combining BuLi and 1-bromo-2-chlorobenzene in ether at  $-70^{\circ}C$  together with  $\underline{1}\underline{1}\underline{a}$  and  $\underline{b}$  (20 equiv. of each; total yield of  $\underline{1}\underline{2}\underline{a}/\underline{b}$  20%). The identical values for the competition constants of the adduct formation in both experiments ensure that  $\underline{8}$  is the reactive intermediate in the first mentioned reaction.



Using 1-chloronaphthvalene  $(\underline{13c})$  instead of  $\underline{9c}$  led to similar results.  $\underline{13c}$  was obtained from  $\underline{13a}^{5)}$  by treatment first with BuLi (to give  $\underline{13b}$ ), then with TsCl, in a yield of 68% <sup>11)</sup>. Unlike  $\underline{9c}$ ,  $\underline{13c}$  is stable at room temperature. Again, the reaction of  $\underline{13c}$  with BuLi in ether at -90°C, after aqueous work-up, gave only 2-<u>n</u>-butylnaphthalene in a yield of about 60%. In addition, when  $\underline{13d}$  was allowed to react with CsF at room temperature in DMSO in the presence of  $\underline{11a}$  and  $\underline{b}$  (10 equiv. of each), a 2.0:1.0 mixture of  $\underline{14a}$  and  $\underline{b}$  was formed (total yield 27%). The same ratio of  $\underline{14a}$  and  $\underline{b}$  was produced (total yield 32%), when the same reaction was carried out with 2-bromo-3-trimethylsilylnaphthalene <sup>12</sup> instead of  $\underline{13d}$ . Evidently, the 1,6-dehydronaphthvalene ( $\underline{16}$ ), when generated from  $\underline{13c}$  by BuLi or from  $\underline{13d}$  by CsF, rearranges quickly to 2,3-dehydronaphthalene ( $\underline{15}$ ) and cannot be trapped by BuLi or 11a and  $\underline{b}$ . We thank the <u>Deutsche Forschungsgemeinschaft</u> and the <u>Fonds der Chemischen Industrie</u> for financial support.

## References and Notes:

- H.-G. Zoch, G. Szeimies, R. Römer, and R. Schmitt, Angew. Chem. <u>93</u>, 894 (1981); Angew. Chem., Int. Ed. Engl. <u>20</u>, 877 (1981). <u>H.-G. Zoch</u>, <u>G. Szeimies</u>, <u>R. Römer</u>, <u>G. Germain</u>, and J.-P. Declercq, Chem. Ber., in print.
- 2) H. Legner, Diplomarbeit Univ. München 1980.
- 3) The thermal rearrangements <u>1</u> → <u>2</u> and <u>3</u> → <u>4</u> appear to be orbital symmetry-forbidden: <u>R. B. Woodward</u> and <u>R. Hoffmann</u>, Angew. Chem. <u>81</u>, 797 (1969); Angew. Chem., Int. Ed. Engl. <u>8</u>, 781 (1969).
- 4) <u>N. J. Turro, C. A. Renner, T. J. Katz</u>, <u>K. B. Wiberg</u>, and <u>H. A. Connon</u>, Tetrahedron Lett. <u>1976</u>, 4133. J. J. Mulder, J. Am. Chem. Soc. <u>99</u>, 5177 (1977).
- 5) <u>T. J. Katz, E. J. Wang</u>, and <u>N. Acton</u>, J. Am. Chem. Soc. <u>93</u>, 3782 (1971). <u>T. J. Katz</u>, <u>R. J. Roth</u>, <u>N. Acton</u>, and <u>E. J. Carnahan</u>, Org. Synth. <u>53</u>, 157 (1973). It is noteworthy that, occasionally, solutions of <u>9b</u> in ether decomposed violently without apparent cause
- 6)  $\underline{9c}$ : <sup>1</sup>H NMR (CCl<sub>4</sub>):  $\delta$  = 2.63 (m; 2 H, 2-H, 5-H), 4.33 (t; 1 H, 6-H), 6.02 (t; 2 H, 3-H, 4-H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/Et<sub>2</sub>0):  $\delta$  = 44.6 (d; C-2, C-5), 54.7 (d; C-6), 70.9 (s; C-1), 133.5 (d; C-3, C-4).
- 7) In addition to <u>9c</u>, the following benzvalene derivatives were obtained from <u>9b</u>: with chlorotrimethylsilane 1-trimethylsilyl-benzvalene (50%), with methyl chloroformate methyl benzvalene-1-carboxylate (33%), with p-toluenesulfonyl bromide 1-bromobenzvalene (30%), with p-toluenesulfonyl fluoride 4-tolyl-1-tricyclo[3.1.0.0<sup>2,6</sup>]hex-4-enyl sulfone (60%).
- 8) At this point it is not clear, if catalysis played a role in the rearrangement of <u>9c</u> to chlorobenzene. In general, bridgehead halogen substituted bicyclo[1.1.0]butanes are, according to our experience, less prone to rearrangement by electrophilic catalysts than the corresponding hydrocarbons.
- <u>U. Burger</u> and <u>G. Gandillon</u>, Tetrahedron Lett. <u>1979</u>, 4281. <u>U. Burger</u>, <u>G. Gandillon</u>, and J. Mareda, Helv. Chim. Acta <u>64</u>, 844 (1981).
- 10) The intermediacy of  $\underline{7}$  is not proven. Our experiments do not exclude a concerted reaction of  $\underline{9f}$  to  $\underline{8}$ .
- 11)  $\underline{13c}$ : <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 2.94 (d; 2 H, 2-H, 5-H), 4.31 (t; 1 H, 6-H). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 43.7 (d; C-2, C-5), 49.1 (d; C-6), 64.9 (s; C-1), 120.3 (d), 124.5 (d), 145.8 (s; C-3, C-4).
- 12) Obtained from 13d by thermal rearrangement.

(Received in Germany 17 December 1982)